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Abstract—The density for a continuous distribution of dislocations, represented by the torsion tensor, is
separated into its two irreducible parts. One part characterizes an isotropic, homogeneous distribution of
screw dislocations; the other, a mixture of screw and edge. A second order non-linear differential equation
for the metric is established using the condition of zero affine curvature. In principle this equation can be
solved for the metric once the distribution of dislocations is determined. The Robertson-Walker metric
which describes an isotropic, bomogenecous space is realized for an isotropic, homogeneous distribution of
screw dislocations. The strain due to this distribution is then easily found from the simple relation between
strain and metric.

1. INTRODUCTION

The aim of this paper is to present an exact solution for the strain due to a continuous,
isotropic, homogeneous distribution of screw dislocations. In general, strain can be found once
the geometry of the medium generated by dislocations is determined. This is because dis-
location density can be represented geometrically by a torsion tensor, as shown by Bilby[1] and
independently by Kondo[2]. Furthermore, strain itself is determined from a geometric object,
the metric tensor.

In order to understand the geometry, it is important to consider the curvature of the
medium. It is physically required that the lattice be uniquely defined even when dislocations are
present; this leads to zero total curvature, represented by the affine curvature tensor. This
curvature tensor can be considered as the sum of two tensors; the Riemannian curvature tensor
which depends on second order non-linear differentials of the metric plus a tensor depending on
torsion, i.e. dislocation density. The vanishing of the total curvature tensor yields second order
non-linear differential equations for the metric, governed by the distribution of dislocations. In
general, approximations are needed in order to solve the equations for the metric and hence the
strain. For example, Eshelby([3] gives a solution for the strain when linearization of the
equations is applicable.

In this paper we present an exact solution for the metric for the special case of an isotropic
homogeneous distribution of screw disiocations. From this distribution the Riemannian part of
the curvature tensor is found to have a simple form. Indeed, the metric leading to this particular
Riemannian curvature has been well studied in general relativity for homogeneous, isotropic
cosmologies. It is the so-called Robertson-Walker metric. From this metric, the expression for
the strain is easily determined.

2. RELATION BETWEEN TORSION AND DISLOCATION DENSITY

The conventions used in this paper are such that all indices, upper and lower, run from one
to three; repeated indices are summed over; comma denotes differentiation; indices surrounded
by parentheses or square brackets indicate symmetric or antisymmetric components respec-
tively.

As mentioned in the introduction, the density of a continuous distribution of dislocations is
given by a torsion tensor, Cg,. Torsion can be pictured as a closure failure of a paralielogram
constructed out of basis vectors, é,, &. In a space without torsion a closed parallelogram can be
formed by taking two infinitesimal basis vectors located at the same point (Fig. 1a) and moving
each one along the other parallel to itself. When torsion exists the parallelogram formed by this
construction is not a closed quadrilateral, the gap being proportional to the torsion (Fig. 1b).
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Fig. 1. (a) Two given infinitesimal basis vectors, £Ax, &,Ay. (b) é,4x, at the point xo, yo+ Ay and &4y, at
the point x,+ Ax, y, are identified as parallet to é,Ax and &Ay at x,, y, respectively. A closed paralielogram
is not formed from these four vectors. The gap in the parallelogram is proportional to the torsion, C§,.

Algebraically, torsion is given as the antisymmetric part of the affine connection, I'g,:
C;7=F;7_r‘;ﬁ 8

where I'g, is discussed further in Section 4.

A dislocation is determined by its Burgers vector and dislocation line. The first index of the
torsion tensor, (1), gives the component of the Burgers vector in the x* direction and the last
two indices give the plane through which the dislocation line passes, é; A é,. There are two basic
types of dislocations, screw and edge. For a screw dislocation, the Burgers vector and
dislocation line are parallel, whereas for an edge, they are perpendicular. In general any
dislocation can be considered a combination of edge and screw. In a solid crystal with
dislocations, if vectors with the same crystallographic components are identified as parallel, a
closure failure of parallelograms occurs; the gap is equal to the Burgers vector {Fig. 2).
Comparing the gap in the parallelogram of Fig. 1 with those in Fig. 2 we see: that torsion is
essentially the Burgers vector per unit area.

3. THE IRREDUCIBLE PARTS OF THE TORSION TENSOR
OR DISLOCATION DENSITY

As discussed by Toupin{4], any tensor of rank three has four irreducible parts. They are its
symmetric part, antisymmetric part and two principal parts. For the torsion tensor, which is
anti-symmetric in its last two indices, the symmetric and second principal part are zero. Thus,
the surviving irreducible parts for the torsion tensor are its anti-symmetric part, ,C,,, and its
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Fig. 2(b).

Fig. 2. (a) A screw diglocation. (b) An edge dislocation. b represents the Burgers vector; g; (i=1,2)
represents crystallographic components. In each figure if af is identified as paraliel to 4, and a; paralle! to
a3, then the paralleiogram formed by these vectors is not closed and the Burgers vector, b, can be related to
the torsion; in fact, comparing with Fig. 1 we see that the Burgers vector per unit area is equal to the

torsion,
first principal part, ,C,g,
4Clapn = Ciapy = %(Ccﬁv + Caya + Crap) Q)
pCasy = %(ZC.,, + Coay = Crap) =~ ;Curp 3
Casy = aCapy + pCapy @

Note that we have lowered the first index of the torsion using the metric, g,,.
Cuﬂy = gukcsy' (5)

The indices of any geometric object may be lowered or raised using the metric, g,,, or its
inverse, g%, e.g.
Ad=g"A,

1)
Av = grAA‘\' )
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The significance of g,, is discussed in Section 4.
We can write ,C,, uniquely in terms of the Levi-Civita tensor density, ¢,5,, Wwhere

€apy = [det (2,5))"aBy] ™
=+1 if [aBy] is an even permutation of 1,2,3
[aByl t =—1 if [aBy]is an odd permutation of 1,2,3 (8)

=0  if [aBy] are not all different.
Thus,
ACfxB'y = Meaﬂy (9)

M has units or Burgers vector per unit area, i.e. reciprocal length. ,C,s, represents an
isotropic, homogeneous distribution of screw dislocations. ,C,s, represents distributions of
screw or edge dislocations, or both[5]. To see this, we form the dual dislocation density, a,?,
where

af = C, €. (10)
The first index in (10) represents the direction of the Burgers vector, and the second index the

direction of the dislocation line. Since a screw dislocation has Burgers vector and dislocation
line parallel, the two indices in (10) should match, and indeed, putting (9) into (10) we find

aa” =2Ms 2. ()
Taking the trace of (11) gives
1 .
M= g a, . (12)
So that
-l a5
ala” =304, A (13)

Thus, .a,” represents a distribution of screw dislocations since it has matching indices.
Furthermore, it is seen that the same density of dislocations, i.e. 2M or (1/3)a,* is present in the
1,2, 3 (or x, y, z) directions. This indicates that no distinction exists in these three directions,
i.e. (9) or (13) represents an isotropic distribution. This is essentially because the Levi-Civita
tensor, €,s,, from which the dislocation density is constructed, is a handle-free tensor; i.e. it
distinguishes no one direction. In addition, no particular points are distinguished by e,g,, which
implies homogeneity in the distribution. As seen in Section S this property of ¢,5, leads to a
Riemannian curvature tensor for a homogeneous, isotropic space.

We now consider the significance of the other irreducible part of the dislocation density,
»Cap, Taking the dual of ,C,4, we find

2Capo€”? =(2C 00 + Copy = Crap) 7. (14)

Adding and subtracting C,,, to (14) gives
(Copo = ACop)e™ = 0,2 =3 08,8 = a8 1s)

An edge dislocation has its Burgers vector and dislocation line perpendicular so that the two
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indices in a,® must differ. Therefore an edge dislocation will be represented by the off-diagonal
elements of ,a,’.

Although ,a.”? is a traceless tensor, diagonal elements (representing screw dislocations) are
not excluded here. A general distribution of screw dislocations can be written as the sum of (13)
and (15) in the dual representation[6]). For example, if the distribution has density M, in the 1
direction, M, in the 2 direction, and M; in the 3 direction, so that in matrix form

0
M,
af = M, (16)
M,
0
(16) has elements in ,a,® given by
M+ My + M, 0
3
Aaﬂ“: MI+M2+M3
3 17
0 M + M, + M;
3
and elements in ,a,® given by
M,—%(M.+M2+M,) 0
1
pa¢‘= MZ-S(MI+M2+M3)
1 (18)
MJ_S(MI + M+ M,)
0

In this more general case, there does not seem to be much gained by separating the
distribution into its two irreducible parts.

To summarize, a general distribution of dislocations, C,4,, has two irreducible parts: 4C,g,
representing an isotropic, homogeneous distribution of screw dislocations and ,C,s,, some
elements of which represent edge dislocations, and others representing screw dislocations.

4. GEOMETRIC CONCEPTS

In order to find the strain due to a continuous isotropic homogeneous distribution of screw
dislocations we first review pertinent geometric concepts. For further discussions, see any book
on differential geometry, e.g. Bishop and Goldberg[7).

We begin with the affine connection mentioned in Section 2. The affine connection, I',,
defines the notion of parallel transport. For a crystal solid, I', has the form[3, 8]

[g, = (™) i, (19)

where u,’ are lattice correspondence functions that relate points in the dislocated crystal, X, to
points in a perfect reference crystal, x”. These lattice correspondence functions are analogous
to the deformation gradient, F,’, used in the theory of elasticity. There, F,’ relates points in the
deformed body, X', to points in a reference configuration, x°, and has components

_X

F. T oaxt”

(20)
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See for example Marsden and Hughes[9]. By putting (19) into (2) we find the dislocation density
(torsion tensor) in terms of .’

C;y = (”'_l)lc(”"ﬂ.y - ”’“y.ﬁ)° (21)

Notice that if the lattice correspondence functions had the form of a gradient as in (20), then
the dislocation density (21) would vanish since in this case u'[8, ¥] would vanish identically.

We next introduce the curvature tensor, R3.,. This gives the change in any vector, A®, upon
parallel transporting that vector around an infinitesimal closed path, i.e.

AA® = R3,sAPé" A é8AxAy

where é” A é°AxAy represents the infinitesimal area enclosed by the path. Algebraically, R3,4 is
given in terms of I'g,:

;16 = r;&'/ - F;‘Y-’ + r:vrzi' -T% ;r (22)

If we put (19) into (22) we find
R =0 (23)

for a dislocated solid crystal.

Indeed, the form of the connection given by (19) was chosen precisely so that the curvature
tensor vanishes. See for example Eisenhart[10]. This insures uniqueness of the lattice; i.e.
lattice vectors are not rotated upon parallel transport about a complete circuit within the lattice.

Finally, we present the metric tensor, g,5. The metric gives the distance, ds, between any
two points infinitesimally separated:

(ds) = g,p dx* dxP. 24)

Since the lengths of vectors are presumed to be conserved under parallel transport, the
covariant derivative of the metric vanishes, i.e.

guB;y = gaﬂ.'y - riyglp - rﬁy&x =0 (25)

where semi-colon denotes covariant differentiation. (The covariant derivative of a tensor gives
the change in that tensor due to parallel transport.) From (25) we find that the connection can be
separated into two parts, '3, and K3§,, such that I3, contains only metric terms, and K§, only
torsion terms.

[g =15+ K3, (26)
1
t;., = 2 g (8ra.y t 8rv.8 — BBya) (1))
1 « o
Kegy =5(C%y + Coy" + Cp") = = K¢, 28

In addition to (25) we find that the covariant derivative of the metric with respect to '3,
vanishes as well, i.e.

8aply = Bapy ~ r:.-,gm - r‘zygaA =0 (29)

where slash denotes covariant differentiation with respect to '3,
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5. STRAIN
The metric is closely related to the Cauchy strain tensor, ¢,,, since

€5 dx* dx? = %[(ds)2 -@dH (30)

where d§ represents the distance between points infinitesimally separated in the perfect
reference crystal and ds the distance between points in the dislocated crystal. For simplicity we
can take

(d$)? = 8,5 dx= dx”. 31

In general,
(d$)* = g, dx* dx?

where 2,5 is the metric for a system of general curvilinear coordinates in the perfect crystal.
The Cauchy strain tensor is then given by

EaB = % [gaB - 5«B] (32)
or

s =3 (80 ~ g (33)

So if we know the metric of the dislocated crystal we can easily find the strain from (32) or (33).
If we put (26) into (22) and (23) we find

Rjs=Rpw+R%=0 34

where
R =Ts,—Tous + D500~ T3, (39)
Riys = Kiuy— Kgys+ K5, K — K33 K5, (36)

The first term in (34), R§,4, is the Riemannian part of the curvature tensor. It depends on
first derivatives of l" , as well as on products of l" . But l" , depends on first derivatives of the
metric (eqn 27). Thls results in a non-linear second order dlﬂerentlal dependence of R on the
metric. Therefore (34) represents second order non-linear differential equations for the metric
which, in principle, can be solved when Rg}; is determined. In general, approximations are
needed in order to solve (34). However, we now derive an exact solution for the special case of
an isotropic homogeneous distribution of screw dislocations.

The first step is to find Ry, Putting K3, = (M[2)eg, in (36) gives

575 = 2 [(MEBJ)I'Y (MGB'y)M] + [61\1656 EAﬁésyl' (37)

Since €&y, =0, (37) reduces to

ra l a a Mz
Ry = 3 legsM.,— €5, M, 1+ v [€5 €bs — €5s€h,) (38)
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We now show that the first term in brackets in (38) is zero. Consider the contracted

curvature tensor, Rgs, where
Rgs = Ras.
From (34),
Rps=Rey+ Ry =0
which implies
Rips = Rigs) + Rigsy = 0.

But K, is a symmetric tensor, i.e. Rigs; = 0. Therefore,

Rigs) = Rigs; = 0.
Using (38),
] 1a 1 a 1 2 _a A
Rp; =R 5=§€“M,"ZM €,3€5,
Putting (43) in (42) yields
T
Ripn =3 €usM.

(44) holds only if
M,=0.
From (45) we see that the first term in (38) vanishes. Therefore

2
= A 2
prs = 1 (€3y€5s — €35€5,)-

The first index in (46) may be lowered by using the metric:

2

M
Réaw = gaaRb';s = T (‘al*/ezﬁ - fauffq-,)«

Since
€1a5€ 5y = 8apBsy — BarEas

(47) can be written as
, M’
Raﬂyb = _4_ (gn6gB'y - gayg56)~
Thus, (34) gives

M2
éaﬂﬁ = T (ga'ygB& - gasgﬂy)~

(39)

40)

@1

42)

43)

(44)

45)

(46)

@)

(48)

(49)

(50

The form of the Riemannian curvature, K34, given by (50) is well known in the theory of
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general relativity. It represents an isotropic homogeneous space of constant positive curvature.
(The sign of the curvature is determined from the sign of the coefficient of the term in
parentheses in (50).) The metric satisfying (50) was first found by Robertson[11] and Walker([12]
and is named after them. In terms of the coordinates 1, 2, 3, it is given as

- Sap
guﬂ = MZ 2"
(1 +2 a,,x»xv)

&1))

The infinitesimal line element squared, derived from (51) is then

dx’+dy*+dz’
(17

d32= 3.
l+ﬁ(x’+y2+zz))

(2

By putting (51) into (32) the strain is found to be

=1 1 _
“73 ((1 +(M*16)8,,X°X°) ‘)5«* (53)

(53) represents an exact expression for the strain generated by a continuous isotropic homo-
geneous distribution of screw dislocations.
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